动手深度学习-硬件对于训练的影响

CPU训练

在计算a+b的数据需要准备a和b

  • l1访问延迟是0.5ns
  • l2访问延迟是7ns
  • 主内存访问延迟100ns(200xl1)

提升空间和时间的内存本地性

  • 时间:重用数据使得保持他们在缓存中
  • 空间:按需读写数据可以使得预读取

所以一个矩阵如果按列存储,访问一行会比访问一列要快

GPU

每个绿点是一个小的处理器(这是泰坦x)

cpu和核心数在6/64-2k/4k

每秒计算的浮点数就是核的数量乘以主频。

内存带宽显卡也是十倍甚至上百倍于GPU,cpu为30GB-100GB,而GPU为400GB-1TB

但是CPU控制流强于GPU

如何提升GPU利用率

并行:使用数千个线程(也叫流处理器)

内存本地访问性:哈运存更小,架构耿凯但你

少用控制语句:支持有限,同步开销很大

不要频繁在CPU和GPU之间传输数据


CPU高性能使用C++,编译器成熟

GPU NVIDIA上用CUDA,OpenCL,质量取决于硬件厂商

单机多卡并行

一台机器能装1-16个GPU在训练和预测时,将一个小批量计算切分到多个GPU上来达到加速的目的

常用的切分方案有

  • 数据并行:将小批量分成n块,每个GPU拿到完整的参数计算这一块数据的梯度,性能通常更好。
  • 模型并行:将模型分成n块,每个GPU拿到一块模型计算它的前向结果,通常用于模型大道单GPU放不下
  • 通道并行(数据+模型并行)

需要模型并行的场景是一张卡放不下模型。

多GPU代码实现

从0开始实现多GPU训练

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

scale = 0.01
W1 = torch.randn(size=(20, 1, 3, 3)) * scale
b1 = torch.zeros(20)
W2 = torch.randn(size=(50, 20, 5, 5)) * scale
b2 = torch.zeros(50)
W3 = torch.randn(size=(800, 128)) * scale
b3 = torch.zeros(128)
W4 = torch.randn(size=(128, 10)) * scale
b4 = torch.zeros(10)
params = [W1, b1, W2, b2, W3, b3, W4, b4]

# 定义模型
def lenet(X, params):
    h1_conv = F.conv2d(input=X, weight=params[0], bias=params[1])
    h1_activation = F.relu(h1_conv)
    h1 = F.avg_pool2d(input=h1_activation, kernel_size=(2, 2), stride=(2, 2))
    h2_conv = F.conv2d(input=h1, weight=params[2], bias=params[3])
    h2_activation = F.relu(h2_conv)
    h2 = F.avg_pool2d(input=h2_activation, kernel_size=(2, 2), stride=(2, 2))
    h2 = h2.reshape(h2.shape[0], -1)
    h3_linear = torch.mm(h2, params[4]) + params[5]
    h3 = F.relu(h3_linear)
    y_hat = torch.mm(h3, params[6]) + params[7]
    return y_hat

# 交叉熵损失函数
loss = nn.CrossEntropyLoss(reduction='none')

def get_params(params, device):
    new_params = [p.to(device) for p in params]
    for p in new_params:
        p.requires_grad_()
    return new_params

new_params = get_params(params, d2l.try_gpu(0))
print('b1 权重:', new_params[1])
print('b1 梯度:', new_params[1].grad)

def allreduce(data):
    for i in range(1, len(data)):
        data[0][:] += data[i].to(data[0].device)
    for i in range(1, len(data)):
        data[i][:] = data[0].to(data[i].device)

data = [torch.ones((1, 2), device=d2l.try_gpu(i)) * (i + 1) for i in range(2)]
print('allreduce之前:\n', data[0], '\n', data[1])
allreduce(data)
print('allreduce之后:\n', data[0], '\n', data[1])

data = torch.arange(20).reshape(4, 5)
devices = [torch.device('cuda:0')]
split = nn.parallel.scatter(data, devices)
print('input :', data)
print('load into', devices)
print('output:', split)

def split_batch(X, y, devices):
    """将X和y拆分到多个设备上"""
    assert X.shape[0] == y.shape[0]
    return (nn.parallel.scatter(X, devices),
            nn.parallel.scatter(y, devices))


def train_batch(X, y, device_params, devices, lr):
    X_shards, y_shards = split_batch(X, y, devices)
    # 在每个GPU上分别计算损失
    ls = [loss(lenet(X_shard, device_W), y_shard).sum()
          for X_shard, y_shard, device_W in zip(
              X_shards, y_shards, device_params)]
    for l in ls:  # 反向传播在每个GPU上分别执行
        l.backward()
    # 将每个GPU的所有梯度相加,并将其广播到所有GPU
    with torch.no_grad():
        for i in range(len(device_params[0])):
            allreduce(
                [device_params[c][i].grad for c in range(len(devices))])
    # 在每个GPU上分别更新模型参数
    for param in device_params:
        d2l.sgd(param, lr, X.shape[0]) # 在这里,我们使用全尺寸的小批量


def train(num_gpus, batch_size, lr):
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    devices = [d2l.try_gpu(i) for i in range(num_gpus)]
    # 将模型参数复制到num_gpus个GPU
    device_params = [get_params(params, d) for d in devices]
    num_epochs = 10
    animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
    timer = d2l.Timer()
    for epoch in range(num_epochs):
        timer.start()
        for X, y in train_iter:
            # 为单个小批量执行多GPU训练
            train_batch(X, y, device_params, devices, lr)
            torch.cuda.synchronize()
        timer.stop()
        # 在GPU0上评估模型
        animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(
            lambda x: lenet(x, device_params[0]), test_iter, devices[0]),))
    print(f'测试精度:{animator.Y[0][-1]:.2f},{timer.avg():.1f}秒/轮,'
          f'在{str(devices)}')

pytorch实现

import torch
from torch import nn
from d2l import torch as d2l
from resnet import Residual


# @save
def resnet18(num_classes, in_channels=1):
    """稍加修改的ResNet-18模型"""

    def resnet_block(in_channels, out_channels, num_residuals,
                     first_block=False):
        blk = []
        for i in range(num_residuals):
            if i == 0 and not first_block:
                blk.append(Residual(in_channels, out_channels,
                                    use_1x1conv=True, strides=2))
            else:
                blk.append(d2l.Residual(out_channels, out_channels))
        return nn.Sequential(*blk)

    # 该模型使用了更小的卷积核、步长和填充,而且删除了最大汇聚层
    net = nn.Sequential(
        nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(64),
        nn.ReLU())
    net.add_module("resnet_block1", resnet_block(
        64, 64, 2, first_block=True))
    net.add_module("resnet_block2", resnet_block(64, 128, 2))
    net.add_module("resnet_block3", resnet_block(128, 256, 2))
    net.add_module("resnet_block4", resnet_block(256, 512, 2))
    net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1, 1)))
    net.add_module("fc", nn.Sequential(nn.Flatten(),
                                       nn.Linear(512, num_classes)))
    return net


net = resnet18(10)
# 获取GPU列表
devices = d2l.try_all_gpus()


# 我们将在训练代码实现中初始化网络

def train(net, num_gpus, batch_size, lr):
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    devices = [d2l.try_gpu(i) for i in range(num_gpus)]

    def init_weights(m):
        if type(m) in [nn.Linear, nn.Conv2d]:
            nn.init.normal_(m.weight, std=0.01)

    net.apply(init_weights)
    # 在多个GPU上设置模型
    net = nn.DataParallel(net, device_ids=devices)
    trainer = torch.optim.SGD(net.parameters(), lr)
    loss = nn.CrossEntropyLoss()
    timer, num_epochs = d2l.Timer(), 10
    animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
    for epoch in range(num_epochs):
        net.train()
        timer.start()
        for X, y in train_iter:
            trainer.zero_grad()
            X, y = X.to(devices[0]), y.to(devices[0])
            l = loss(net(X), y)
            l.backward()
            trainer.step()
        timer.stop()
        animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(net, test_iter),))
    print(f'测试精度:{animator.Y[0][-1]:.2f},{timer.avg():.1f}秒/轮,'
          f'在{str(devices)}')


train(net, num_gpus=1, batch_size=256, lr=0.1)
Last modification:July 30, 2024
如果觉得我的文章对你有用,请随意赞赏