PyTorch神经网络
nn.Module
import torch
from torch import nn
from torch.nn import functional as F
# 任何层与神经网络 都是nn.Module的子类
class MLP(nn.Module):
def __init__(self):
super().__init__()
# 隐藏层,存储在类的成员变量中
self.hidden = nn.Linear(20, 256)
# 输出层
self.out = nn.Linear(256, 10)
def forward(self, X):
# X经过隐藏层,再经过激活函数,最后输出
return self.out(F.relu(self.hidden(X)))
net = nn.Sequential(nn.Linear(20, 256),
nn.ReLU(), nn.Linear(256, 10))
# 生成随机输入
X = torch.rand(2, 20)
net(X)
# 实例化
net = MLP()
print(net(X))
# 实现nn.Sequential相似的操作
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for block in args:
# 这是放每一层的字典
self._modules[block] = block
def forward(self, X):
for block in self._modules.values():
X = block(X)
return X
net = MySequential(nn.Linear(20, 256),
nn.ReLU(), nn.Linear(256, 10))
print(net(X))
# 在正向传播中执行代码
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
X = F.relu(torch.mm(X, self.rand_weight) + 1)
X = self.linear(X)
# 如果绝对值的求和大于1就除2
while X.abs().sum() > 1:
X /= 2
return X.sum()
net = FixedHiddenMLP()
net(X)
# 混合搭配各种组合块的方法
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
参数管理
import torch
from torch import nn
from torch.nn import functional as F
# 单隐藏层的多层感知机
net = nn.Sequential(nn.Linear(4, 8),
nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
# 参数访问,这里拿的是最后的一个输出层,这里是第三层
# 叫做state是因为权重就是自身的一个状态,这里会输出weight和bios
print(net[2].state_dict())
# 也可以直接访问weight和bios
print(type(net[2].bias))
print(net[2].bias) # 因为它除了data属性以外还有梯度
print(net[2].bias.data)
print(net[2].weight.grad) # 没有计算梯度所以为None
# 拿到整个网络的参数
print(*[(name, param.shape) for name, param in net[0].named_parameters()]) # 名字叫做weight和bias
print(*[(name, param.shape) for name, param in net.named_parameters()])
# 也可以通过名字访问
print(net.state_dict()['2.bias'].data)
# 从嵌套快收集参数
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
net.add_module(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
print(rgnet)
自定义层
import torch
import torch.nn.functional as F
from torch import nn
# 自定义层
class CenteredLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X):
# 输入剪均值,其实计算均值化为0
return X - X.mean()
layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
Y.mean()
# 带参数的层
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
# 输入大小乘以输出大小的矩阵,随机初始化,nn.Parameter是用来加梯度的
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units, ))
def forward(self, X):
# 矩阵乘法+bias
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
linear = MyLinear(5, 3)
print(linear.weight)
读写文件
import torch
from torch import nn
from torch.nn import functional as F
# 构造长为4的向量
x = torch.arange(4)
# 在当前目录保存这个向量
torch.save(x, 'x-file')
# 可以重新加载回来
x2 = torch.load("x-file")
print(x2)
# 存储张量列表,然后读会内存
y = torch.zeros(4)
torch.save([x, y], 'x-files')
x2, y2 = torch.load('x-files')
print(x, y2)
# 写入或读取字符串映射到张量的字典,x对应x矩阵,y对应y字典
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
print(mydict2)
# 加载保存模型参数
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.output = nn.Linear(256, 10)
def forward(self, x):
return self.output(F.relu(self.hidden(x)))
net = MLP()
X = torch.rand(size=(2, 20))
Y = net(X)
torch.save(net.state_dict(), 'mlp.params')
clone = MLP()
# 带走网络的信息和具体的参数
clone.load_state_dict(torch.load("mlp.params"))
# 设置为评估模型然后打印
print(clone.eval())
# 序列化后调用这个网络,然后进行传播
Y_clone = clone(X)
# 与之前的Y进行比较,这里是对每个元素进行比较
print(Y_clone == Y)
GPU计算
import torch
from torch import nn
from d2l import torch as d2l
# 分别是 第0个gpu第一个gpu
print(torch.device('cpu'), torch.cuda.device('cuda'), torch.cuda.device('cuda:1'))
# 查询可用的gpu数量
print(torch.cuda.device_count())
# 默认在cpu创建的
x = torch.tensor([1, 2, 3])
print(x.device)
# 这样就可以创建在GPU上了
X = torch.ones(2, 3, device=d2l.try_gpu())
print(X)
# 进行一次拷贝
Z = X.cuda(0)
print(X)
print(Z)
# 我们进行计算时,必须要保证计算的俩个元素都在同一个GPU上
print(X + Z)
# 做神经网络的计算
net = nn.Sequential(nn.Linear(3, 1))
# 移动到gpu上
net = net.to(device=d2l.try_gpu())
print("net:", net(X))
print(net[0].weight.data.device)