HTTP常见面试题2

有了HTTP为什么还要有RPC

简介

作为一个程序员,假设我们需要在 A 电脑的进程发一段数据到 B 电脑的进程,我们一般会在代码里使用 Socket 进行编程。

这时候,我们可选项一般也就 TCP 和 UDP 二选一。TCP 可靠,UDP 不可靠。除非是马总这种神级程序员(早期 QQ 大量使用 UDP),否则,只要稍微对可靠性有些要求,普通人一般无脑选 TCP 就对了。

使用纯裸TCP会有什么问题

TCP是有三个特点,面向链接,可靠,基于字节流

这三个特点真的概括的非常精辟,每个特点都可以展开聊,我们今天需要关注的是基于字节流这一点

字节流可以理解为一个双向的通道里面流淌的数据,这个数据其实就是我们常说的二进制数据流,简单来说就是一大堆-1串.纯裸TCP首发的这些01串之间是没有任何边界的,你根本不知道那哪个地方才算一条完整的消息

说这个的目的是为了告诉大家,纯裸 TCP 是不能直接拿来用的,你需要在这个基础上加入一些自定义的规则,用于区分消息边界

于是我们会把每条要发送的数据都包装一下,比如加入消息头消息头里写清楚一个完整的包长度是多少,根据这个长度可以继续接收数据,截取出来后它们就是我们真正要传输的消息体

而这里头提到的消息头,还可以放各种东西,比如消息体是否被压缩过和消息体格式之类的,只要上下游都约定好了,互相都认就可以了,这就是所谓的协议。

每个使用 TCP 的项目都可能会定义一套类似这样的协议解析标准,他们可能有区别,但原理都类似

于是基于 TCP,就衍生了非常多的协议,比如 HTTP 和 RPC。

HTTP和RPC

回头过来看看网络的分层图

TCP是传输层的协议,而基于TCP造出来的HTTP和各类RPC协议,它们都只是定义了不同的消息格式的应用层协议而已

HTTP 协议(Hyper Text Transfer Protocol),又叫做超文本传输协议。我们用的比较多,平时上网在浏览器上敲个网址就能访问网页,这里用到的就是 HTTP 协议。

RPCRemote Procedure Call),又叫做远程过程调用。它本身并不是一个具体的协议,而是一种调用方式

举个例子,我们平时调用一个本地方法就像下面这样。

 res = localFunc(req)

如果现在这不是个本地方法,而是个远端服务器暴露出来的一个方法 remoteFunc,如果我们还能像调用本地方法那样去调用它,这样就可以屏蔽掉一些网络细节,用起来更方便,岂不美哉?

 res = remoteFunc(req)

基于这个思路,大佬们造出了非常多款式的 RPC 协议,比如比较有名的gRPCthrift

值得注意的是,虽然大部分 RPC 协议底层使用 TCP,但实际上它们不一定非得使用 TCP,改用 UDP 或者 HTTP,其实也可以做到类似的功能。

到这里,我们回到文章标题的问题。

既然有 HTTP 协议,为什么还要有 RPC?

其实,TCP70年代出来的协议,而 HTTP90 年代才开始流行的。而直接使用裸 TCP 会有问题,可想而知,这中间这么多年有多少自定义的协议,而这里面就有80年代出来的 RPC

所以我们该问的不是既然有 HTTP 协议为什么要有 RPC,而是为什么有 RPC 还要有 HTTP 协议

那既然有 RPC 了,为什么还要有 HTTP 呢?

现在电脑上装的各种联网软件,比如 xx管家,xx卫士,它们都作为客户端(Client)需要跟服务端(Server)建立连接收发消息,此时都会用到应用层协议,在这种 Client/Server (C/S) 架构下,它们可以使用自家造的 RPC 协议,因为它只管连自己公司的服务器就 ok 了。

但有个软件不同,浏览器(Browser),不管是 Chrome 还是 IE,它们不仅要能访问自家公司的服务器(Server),还需要访问其他公司的网站服务器,因此它们需要有个统一的标准,不然大家没法交流。于是,HTTP 就是那个时代用于统一 Browser/Server (B/S) 的协议。

也就是说在多年以前,HTTP 主要用于 B/S 架构,而 RPC 更多用于 C/S 架构。但现在其实已经没分那么清了,B/S 和 C/S 在慢慢融合。*很多软件同时支持多端,比如某度云盘,既要支持*网页版,还要支持手机端和 PC 端,如果通信协议都用 HTTP 的话,那服务器只用同一套就够了。而 RPC 就开始退居幕后,一般用于公司内部集群里,各个微服务之间的通讯。

那这么说的话,都用 HTTP 得了,还用什么 RPC?

仿佛又回到了文章开头的样子,那这就要从它们之间的区别开始说起。

HTTP和RPC有什么区别

服务发现

首先要向某个服务器发起请求,你得先建立连接,而建立连接的前提是,你知道IP地址和端口.这个找到服务器对应的IP端口的过程,就是服务发现.

在HTTP中,你知道服务的域名,可以通过DNS服务去解析得到它背后的IP地址,某人80端口.

而RPC的话,就有些区别,一般有专门的中间服务去保存服务名和IP信息,比如Consul或者RTCD甚至Redis.想要访问某个服务,就去这些中间服务去获得IP和端口信息.由于DNS也是服务发现的一种,所以也有基于DNS去做服务发现的组件,比如CoreDNS

可以看出服务发现这一块,两者是有些区别,但不太能分高低。

底层连接形式

以主流的HTTP1.1协议为例,其默认在底层建立一个TCP连接后会一直保持这个连接KEEP Alive,之后的请求和响应都会复用这条连接

而RPC协议,也跟HTTP类似,也是通过建立TCP长链接进行数据交互,但不同的地方在于RPC协议一般还会再建个连接池,在请求大量的时候,建立多条连接放在池内,要发数据的时候就从池里取一条连接出来,用完放回去,下次再复用,可以说非常环保

由于连接池有利于提升网络性能,所以不少变成语言的网络库里都会给HTTP加个连接池,比如GO就是这么干的

可以看出这一块也没太大区别,所以也不是关键

传输内容

基于 TCP 传输的消息,说到底,无非都是消息头 Header 和消息体 Body。

Header 是用于标记一些特殊信息,其中最重要的是消息体长度

Body 则是放我们真正需要传输的内容,而这些内容只能是二进制 01 串,毕竟计算机只认识这玩意。所以 TCP 传字符串和数字都问题不大,因为字符串可以转成编码再变成 01 串,而数字本身也能直接转为二进制。但结构体呢,我们得想个办法将它也转为二进制 01 串,这样的方案现在也有很多现成的,比如 Json,Protobuf。

这个将结构体转为二进制数组的过程就叫序列化,反过来将二进制数组复原成结构体的过程叫反序列化

对于主流的 HTTP/1.1,虽然它现在叫超文本协议,支持音频视频,但 HTTP 设计初是用于做网页文本展示的,所以它传的内容以字符串为主。Header 和 Body 都是如此。在 Body 这块,它使用 Json序列化结构体数据。

我们可以随便截个图直观看下。

可以看到这里面的内容非常多的冗余,显得非常啰嗦。最明显的,像 Header 里的那些信息,其实如果我们约定好头部的第几位是 Content-Type,就不需要每次都真的把"Content-Type"这个字段都传过来,类似的情况其实在 body 的 Json 结构里也特别明显。

而 RPC,因为它定制化程度更高,可以采用体积更小的 Protobuf 或其他序列化协议去保存结构体数据,同时也不需要像 HTTP 那样考虑各种浏览器行为,比如 302 重定向跳转啥的。因此性能也会更好一些,这也是在公司内部微服务中抛弃 HTTP,选择使用 RPC 的最主要原因。

当然上面说的 HTTP,其实特指的是现在主流使用的 HTTP/1.1HTTP/2 在前者的基础上做了很多改进,所以性能可能比很多 RPC 协议还要好,甚至连 gRPC 底层都直接用的 HTTP/2

那么问题又来了,为什么既然有了 HTTP/2,还要有 RPC 协议?

这个是由于 HTTP/2 是 2015 年出来的。那时候很多公司内部的 RPC 协议都已经跑了好些年了,基于历史原因,一般也没必要去换了。

  • 纯裸 TCP 是能收发数据,但它是个无边界的数据流,上层需要定义消息格式用于定义消息边界。于是就有了各种协议,HTTP 和各类 RPC 协议就是在 TCP 之上定义的应用层协议。
  • RPC 本质上不算是协议,而是一种调用方式,而像 gRPC 和 Thrift 这样的具体实现,才是协议,它们是实现了 RPC 调用的协议。目的是希望程序员能像调用本地方法那样去调用远端的服务方法。同时 RPC 有很多种实现方式,不一定非得基于 TCP 协议
  • 从发展历史来说,HTTP 主要用于 B/S 架构,而 RPC 更多用于 C/S 架构。但现在其实已经没分那么清了,B/S 和 C/S 在慢慢融合。很多软件同时支持多端,所以对外一般用 HTTP 协议,而内部集群的微服务之间则采用 RPC 协议进行通讯。
  • RPC 其实比 HTTP 出现的要早,且比目前主流的 HTTP/1.1 性能要更好,所以大部分公司内部都还在使用 RPC。
  • HTTP/2.0HTTP/1.1 的基础上做了优化,性能可能比很多 RPC 协议都要好,但由于是这几年才出来的,所以也不太可能取代掉 RPC。

有HTTP为什么还要有WebSocket

使用HTTP不断轮询

其实问题的通电在于,怎么才能在用户不作任何操作的情况下,网页能收到消息并发生变更.

最常见的解决方法是,网页的前端代码里面不断定时发HTTP请求到服务器,服务器收到请求后给客户端响应消息

这其实是一种伪服务器推的形式

它其实并不是服务器主动发消息到客户端,而是客户端自己不断偷偷请求服务器,只是用户无感知而已。

用这种方式的场景也有很多,最常见的就是扫码登录

比如,某信公众号平台,登录页面二维码出现之后,前端网页根本不知道用户扫没扫,于是不断去向后端服务器询问,看有没有人扫过这个码。而且是以大概 1 到 2 秒的间隔去不断发出请求,这样可以保证用户在扫码后能在 1 到 2 秒内得到及时的反馈,不至于等太久

使用HTTP定时轮询

但这样会有俩个比较明显的问题

  • 当你打开 F12 页面时,你会发现满屏的 HTTP 请求。虽然很小,但这其实也消耗带宽,同时也会增加下游服务器的负担。
  • 最坏情况下,用户在扫码后,需要等个 1~2 秒,正好才触发下一次 HTTP 请求,然后才跳转页面,用户会感到明显的卡顿

使用起来的体验就是,二维码出现后,手机扫一扫,然后在手机上点个确认,这时候卡顿等个 1~2 秒,页面才跳转。

那么问题就来了,有没有更好的方案?有而且实现成本很低

长轮询

我们知道,HTTP请求发出后,一般会给服务器留一定的时间做响应,比如3秒,规定时间没返回,就认为是超时

如果我们的HTTP请求将超时时间设置的很大,比如30秒,在这30秒内只要收到了扫码请求,就立马返回给客户端网页,如果超时,那就立马发起下一次请求

这样就减少了 HTTP 请求的个数,并且由于大部分情况下,用户都会在某个 30 秒的区间内做扫码操作,所以响应也是及时的。

比如,某度云网盘就是这么干的。所以你会发现一扫码,手机上点个确认,电脑端网页就秒跳转,体验很好。

像这种发起一个请求,在较长时间内等待服务器响应的机制,就是所谓的长训轮机制。我们常用的消息队列 RocketMQ 中,消费者去取数据时,也用到了这种方式。

像这种,在用户不感知的情况下,服务器将数据推送给浏览器的技术,就是所谓的服务器推送技术,它还有个毫不沾边的英文名,comet 技术,大家听过就好。

上面提到的两种解决方案(不断轮询和长轮询),本质上,其实还是客户端主动去取数据。

对于像扫码登录这样的简单场景还能用用。但如果是网页游戏呢,游戏一般会有大量的数据需要从服务器主动推送到客户端。

这就得说下 WebSocket 了。

WebSocket是什么

我们知道 TCP 连接的两端,同一时间里双方都可以主动向对方发送数据。这就是所谓的全双工

而现在使用最广泛的HTTP/1.1,也是基于TCP协议的,同一时间里,客户端和服务器只能有一方主动发数据,这就是所谓的半双工

也就是说,好好的全双工 TCP,被 HTTP/1.1 用成了半双工。

为什么?

这是由于 HTTP 协议设计之初,考虑的是看看网页文本的场景,能做到客户端发起请求再由服务器响应,就够了,根本就没考虑网页游戏这种,客户端和服务器之间都要互相主动发大量数据的场景。

所以,为了更好的支持这样的场景,我们需要另外一个基于TCP的新协议

于是新的应用层协议WebSocket就被设计出来了。

大家别被这个名字给带偏了。虽然名字带了个socket,但其实 socket 和 WebSocket 之间,就跟雷峰和雷峰塔一样,二者接近毫无关系

怎么建立websocket

我们平时刷网页,一般都是在浏览器上刷的,一会刷刷图文,这时候用的是 HTTP 协议,一会打开网页游戏,这时候就得切换成我们新介绍的 WebSocket 协议

为了兼容这些使用场景。浏览器在 TCP 三次握手建立连接之后,都统一使用 HTTP 协议先进行一次通信。

  • 如果此时是普通的 HTTP 请求,那后续双方就还是老样子继续用普通 HTTP 协议进行交互,这点没啥疑问。
  • 如果这时候是想建立 WebSocket 连接,就会在 HTTP 请求里带上一些特殊的header 头,如下:
Connection: Upgrade
Upgrade: WebSocket
Sec-WebSocket-Key: T2a6wZlAwhgQNqruZ2YUyg==\r\n

这些 header 头的意思是,浏览器想升级协议(Connection: Upgrade),并且想升级成 WebSocket 协议(Upgrade: WebSocket)。同时带上一段随机生成的 base64 码(Sec-WebSocket-Key),发给服务器。

如果服务器正好支持升级成 WebSocket 协议。就会走 WebSocket 握手流程,同时根据客户端生成的 base64 码,用某个公开的算法变成另一段字符串,放在 HTTP 响应的 Sec-WebSocket-Accept 头里,同时带上101状态码,发回给浏览器。HTTP 的响应如下:

HTTP/1.1 101 Switching Protocols\r\n
Sec-WebSocket-Accept: iBJKv/ALIW2DobfoA4dmr3JHBCY=\r\n
Upgrade: WebSocket\r\n
Connection: Upgrade\r\n

HTTP 状态码=200(正常响应)的情况,大家见得多了。101 确实不常见,它其实是指协议切换

之后,浏览器也用同样的公开算法base64码转成另一段字符串,如果这段字符串跟服务器传回来的字符串一致,那验证通过。

就这样经历了一来一回两次 HTTP 握手,WebSocket就建立完成了,后续双方就可以使用 webscoket 的数据格式进行通信了。

上面这张图就是全貌了,从截图上的注释可以看出,WebSocket和HTTP一样都是基于TCP的协议。经历了三次TCP握手之后,利用 HTTP 协议升级为 WebSocket 协议

你在网上可能会看到一种说法:"WebSocket 是基于HTTP的新协议",其实这并不对,因为WebSocket只有在建立连接时才用到了HTTP,升级完成之后就跟HTTP没有任何关系了

这就好像你喜欢的女生通过你要到了你大学室友的微信,然后他们自己就聊起来了。你能说这个女生是通过你去跟你室友沟通的吗?不能。你跟HTTP一样,都只是个工具人

这就有点"借壳生蛋"的那意思。

HTTP和WebSocket的关系

使用场景

WebSocket完美继承了 TCP 协议的全双工能力,并且还贴心的提供了解决粘包的方案。

它适用于需要服务器和客户端(浏览器)频繁交互的大部分场景,比如网页/小程序游戏,网页聊天室,以及一些类似飞书这样的网页协同办公软件。

回到文章开头的问题,在使用 WebSocket 协议的网页游戏里,怪物移动以及攻击玩家的行为是服务器逻辑产生的,对玩家产生的伤害等数据,都需要由服务器主动发送给客户端,客户端获得数据后展示对应的效果。

总结

  • TCP 协议本身是全双工的,但我们最常用的 HTTP/1.1,虽然是基于 TCP 的协议,但它是半双工的,对于大部分需要服务器主动推送数据到客户端的场景,都不太友好,因此我们需要使用支持全双工的 WebSocket 协议。
  • 在 HTTP/1.1 里,只要客户端不问,服务端就不答。基于这样的特点,对于登录页面这样的简单场景,可以使用定时轮询或者长轮询的方式实现服务器推送(comet)的效果。
  • 对于客户端和服务端之间需要频繁交互的复杂场景,比如网页游戏,都可以考虑使用 WebSocket 协议。
  • WebSocket 和 socket 几乎没有任何关系,只是叫法相似。
  • 正因为各个浏览器都支持 HTTP协 议,所以 WebSocket 会先利用HTTP协议加上一些特殊的 header 头进行握手升级操作,升级成功后就跟 HTTP 没有任何关系了,之后就用 WebSocket 的数据格式进行收发数据。
Last modification:April 21, 2023
如果觉得我的文章对你有用,请随意赞赏